ELICITING A DIRECTED ACYCLIC GRAPH FOR A MULTIVARIATE TIME SERIES OF VEHICLE COUNTS IN A TRAFFIC NETWORK Running heading: ELICITING A DIRECTED ACYCLIC GRAPH
نویسندگان
چکیده
The problem of modelling multivariate time series of vehicle counts in traffic networks is considered. It is proposed to use a model called the linear multiregression dynamic model (LMDM). The LMDM is a multivariate Bayesian dynamic model which uses any conditional independence and causal structure across the time series to break down the complex multivariate model into simpler univariate dynamic linear models. The conditional independence and causal structure in the time series can be represented by a directed acyclic graph (DAG). The DAG not only gives a useful pictorial representation of the multivariate structure, but it is also used to build the LMDM. Therefore, eliciting a DAG which gives a realistic representation of the series is a crucial part of the modelling process. A DAG is elicited for the multivariate time series of hourly vehicle counts at the junction of three major roads in the UK. A flow diagram is introduced to give a pictorial representation of the possible vehicle routes through the network. It is shown how this flow diagram, together with a map of the network, can suggest a DAG for the time series suitable for use with an LMDM.
منابع مشابه
Eliciting a directed acyclic graph for a multivariate time series of vehicle counts in a traffic network
In this paper we consider the problem of modelling multivariate time series of vehicle counts in traffic networks. We propose using a model called the linear multiregression dynamic model (LMDM). The LMDM is a multivariate Bayesian dynamic model which uses any conditional independence and causal structure across the time series to break down the complex multivariate model into simpler univariat...
متن کاملEliciting a DAG for a multivariate time series of vehicle counts in a traffic network
In this paper we elicit a directed acyclic graph (DAG) for the multivariate time series of hourly vehicle counts at the junction of three major roads in the UK. A flow diagram is introduced to give a pictorial representation of the possible vehicle routes through the network. It is shown how this flow diagram, together with a map of the network, can suggest a suitable DAG which represents the c...
متن کاملظرفیت شبکه های حذفی تحت کدینگ فضایی شبکه
We study the capacity of point-to-point erasure networks under a restricted form of network coding to which we refer as spatial network coding. In this form of coding, the nodes can not perform coding on successive packets which are received from one incoming link. The coding at a node is restricted to the packets received at the same time slot from different incoming links...
متن کاملA new Shuffled Genetic-based Task Scheduling Algorithm in Heterogeneous Distributed Systems
Distributed systems such as Grid- and Cloud Computing provision web services to their users in all of the world. One of the most important concerns which service providers encounter is to handle total cost of ownership (TCO). The large part of TCO is related to power consumption due to inefficient resource management. Task scheduling module as a key component can has drastic impact on both user...
متن کاملLearning Bayesian Network Structure using Markov Blanket in K2 Algorithm
A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG). There are basically two methods used for learning Bayesian network: parameter-learning and structure-learning. One of the most effective structure-learning methods is K2 algorithm. Because the performance of the K2 algorithm depends on node...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007